Berikutini merupakan contoh soal beserta penyelesaiannya mengenai definisi dan terminologi graf lanjutan, yang meliputi jalan (walk), lintasan (path), sikel (cycle). sirkuit (circuit), jalur (trail), jembatan (bridge/cut set), termasuk juga mengenai graf Euler, graf Hamilton, konektivitas graf, matriks keterhubungan langsung (adjacency matrix), matriks keterkaitan (incidency matrix 33 Matriks Ajoin dan Matriks Kofaktor 51 3.4 Invers Suatu Matriks 55 3.4.1 Metode Substitusi 55 3.4.2 Metode Matriks Ajoin 58 3.4.3 Metode Gauss - Jourdan 63 3.5 Rank Suatu Matriks 70 Soal-soal Latihan 72 BAB 4 PERSAMAAN LINEAR SIMULTAN DAN APLIKASINYA DALAM EKONOMI 4.1 Pengantar 75 4.2 Persamaan Matriks 75 4.3 Sistem Dua Persamaan Linear dengan Apakahkamu sedang mencari jawaban dari pertanyaan Diketahui matriks A = ( x+1 2), B = ( x 3 ), dan C (3 5).Jika A+ B= C, 3 5 2 y+2 5 4, Maka nilai x + y adalah.. Berikut ini adalah jawaban dari pertanyaan yang kamu cari : 34 0 2 0 4 0 2 3 A = 3 4 0 2 0 4 0 2 3 Matriks A merupakan matriks skew-simetri. j. Matriks Kompleks Sekawan Definisi: Jika semua unsur a ij dari suatu matriks A diganti dengan kompleks seka-wannya a ij, maka matriks yang diperoleh dinamakan kompleks sekawan dari A dan dinyatakan dengan A. Contoh : Bilamana A = j j j 3 2 3 1 2 maka A = j j j 3 23. Invers Matriks De nisi 2.5. [7] Jika Aadalah matriks bujursangkar, dan jika terdapat ma-triks Byang ukurannya sama sedemikian sehingga AB= BA= I, maka Adapat dibalik dan Bdisebut sebagai invers dari A. Jika matriks Btidak dapat dide nisikan, maka Adinyatakan sebagai matriks singular. De nisi 2.6. [7] Misalkan matriks Amatriks berukuran m n. Jikamatriks sebarang a dan matriks nol 0 dengan ukuran yang sama, jelas bahwa a + 0 = 0 + a = a, sama seperti bilangan real a + 0 = 0 + a = a. Untuk menyelesaikan invers matriks, terdapat beberapa aturan berdasarkan ordo matriks yaitu 2 x 2 dan 3 x 3. Untuk mengecek apakah suatu matriks (2×2) memiliki invers atau tidak, dapat dilihat BacaJuga: Perkalian Matriks 2×2, 3×3, dan mxn dengan nxm. Definisi: Jika A adalah matriks kuadrat, maka minor entri a ij dinyatakan oleh M ij dan didefinisikan menjadi determinan submatriks yang tetap setelah baris ke-i dan kolom ke-j dicoret dari A. Kofaktor entri a ij Jikax = (1, -3, 0, 2), maka hasil transformasi T adalah Jadi, w = (1, 3, 8) 11 Contoh 7: Carilah matriks transformasi dari R2 ke R2 jika mula-mula vektor v diregang (shear) dengan faktor sebesar 3 dalam arah-x kemudian hasilnya dicerminkan terhadap y = x. Jawaban: AljabarLinier dan Matriks 3 2. Komponen Vektor Di dalam komponen sebuah vektor ada istilah yang disebut dengan ruang vektor. Misalkan apabila kita memiliki himpunan V memiliki operasi +, x maka Jika u dan v adalah objek - objek pada v maka u + v berada pada v. b. u + v = v + u c. u + (v + w) = (u + v) + w RumusPenjumlahan Matriks - Pengertian Rumus Matriks Matematika jika melihat dari para ahli Matematika ialah kumpulan simbol atau ekspresi dan kumpulan bilangan - bilangan yg berbentuk menyerupai persegi panjang yg disusun atas baris dan kolom. Kemudian Bilangan - Bilangan Matriks Matematika tersebut bisa disebut pula dg elemen atau komponen bilangan Matriks dan hal ini sudah kami pernah 34.5 Menentukan invers matriks ordo 2 × 2 3.4.6 Menetukan adjouin matriks ordo 3 x 3 3.4.7 Menentukan invers matriks ordo 3 x 3 3.4.8 Menganalisis sifat-sifat invers matrik 4.4.1 Menyelesaikan masalah kontekstual mengenai determinan matriks ordo 2 x 2 4.4.2 Menyelesaikan masalah kontekstual mengenai determinan matriks ordo 3 x 3 4.4.3 Jikakita punya matriks 2×2, misal A = , maka invers matriks dapat dihitung menggunakan rumus. A-1 = B = = = Cek, apakah AB = BA = I Bagaimana cara menghitung invers jika matriksnya memiliki ordo lebih dari 2? Misal matriks 3×3, 4×4, dan seterusnya. Pada matriks yang berordo lebih dari dua ini kita akan memanfatkan Eliminasi Gauss Jordan Jikasuatu matriks bujur sangkar A dikalikan terhadap inversnya yaitu matriks bujur sangkar A -1 maka menghasilkan matriks I (matriks identitas pada operasi perkalian matriks). Cara mencari invers matriks untuk ordo 2 x 2 dan invers matriks ordo 3 x 3 diberikan seperti berikut. Invers Matriks Ordo 2 x 2. Invers dari suatu matriks A dengan MisalkanA adalah matriks yang kolomnya merupakan basis dari ruang vektor W ∈ ℝᵐ, maka kita dapat membuat A sebagai matriks m × n sebagai, Tujuan kita adalah menemukan pendekatan terbaik untuk vektor v di Col (A). (2) Penyelesaian Jika kita menggunakan persamaan normal Ax = b, kita tidak memiliki penyelesaian. Dalambentuk matriks, transformasi rotasi di atas dapat dituliskan sebagai berikut. Jika kita lanjutkan dengan mengalikan kedua matriks di atas, akan diperoleh bentuk sebagai berikut. Perhatikan bahwa masing-masing komponen matriks di atas merupakan rumus trigonometri dari penjumlahan dua sudut. Jika disederhanakan akan menjadi bentuk sebagai 0P2bud. Artikel Matematika kelas XI ini menjelaskan cara menyelesaikan operasi aljabar pada matriks, mulai dari menjumlahkan, mengurangkan, sampai mengalikan dua atau lebih matriks. — Kamu suka nonton film fiksi ilmiah? Kalo iya, kamu harus coba tonton salah satu film yang pernah terkenal di tahun 2000-an, deh. “The Matrix” judulnya. Singkatnya, film ini menceritakan tentang kehidupan umat manusia yang sebenarnya telah diatur dalam matrix, sebuah program hasil ciptaan mesin-mesin jahat yang ingin menundukkan populasi manusia. Akibatnya, perang antara mesin dengan manusia pun tidak dapat dihindarkan dan matrix harus segera dihancurkan. Mantap! Keren banget nggak tuh kelihatannya. Pokoknya, bagi kamu yang suka nonton film sambil mikir, “The Matrix” harus masuk list tontonan kamu saat senggang atau bosan. Adegan di film The Matrix Sumber Hmm, ngomongin film yang judulnya matrix, jadi inget, di Matematika juga ada lho materi tentang matriks. Tapi, pengertiannya tentu beda ya dengan matrix yang ada di film. Kalau di Matematika, matriks adalah kumpulan bilangan yang disusun berdasarkan urutan baris dan kolom, serta dibatasi oleh sebuah tanda kurung. Nah, kali ini, kita akan membahas materi tentang matriks, teman-teman. Eits! Bukan matrix yang ada di film “The Matrix” itu ya, melainkan matriks yang ada dalam pelajaran Matematika. Eh, eh, jangan sedih gitu dong denger kata Matematika. Materinya juga nggak kalah seru, kok! Sebenarnya, di artikel sebelumnya, matriks juga sudah pernah dibahas, nih. Tapi, belum semuanya. Hanya sekedar pengenalan tentang matriks dan komponen-komponennya, jenis-jenis matriks, dan transpose suatu matriks saja. Jadi, buat kamu yang belum paham betul apa itu matriks, bisa baca dulu artikelnya lewat link di bawah ini, ya. Baca juga Cari Tahu Lebih Dalam Tentang Matriks, Yuk! Oke, berhubung penjelasan awal tentang matriks sudah dibahas, kita akan lanjut ke materi berikutnya, yaitu operasi aljabar matriks. Terdapat tiga macam bentuk operasi aljabar pada matriks, yaitu operasi penjumlahan, pengurangan, dan perkalian. Kira-kira, bagaimana ya cara menyelesaikan masing-masing operasi tersebut? Mari kita simak penjelasannya berikut ini! Penjumlahan dan Pengurangan Matriks Pertama, ada operasi penjumlahan dan pengurangan matriks. Kita akan bahas satu-persatu dimulai dari operasi penjumlahannya terlebih dahulu, ya. 1. Penjumlahan Matriks Misalkan terdapat dua buah matriks, yaitu matriks A dan matriks B. Jika matriks C adalah matriks penjumlahan dari A dengan B, maka matriks C dapat diperoleh dengan menjumlahkan setiap elemen pada matriks A yang seletak dengan setiap elemen pada matriks B. Oleh karena itu, syarat agar dua atau lebih matriks dapat dijumlahkan adalah harus memiliki ordo yang sama. Contoh Hasil dari A + B dapat diperoleh dengan menjumlahkan setiap elemen matriks A yang seposisi dengan setiap elemen matriks B. Paham, ya. Selanjutnya ada operasi pengurangan matriks. Tapi, sebelum masuk ke bahasan tentang operasi pengurangan matriks, kamu harus tahu dulu istilah tentang lawan suatu matriks. Wadaw! Apaan, tuh?! Baca juga Cara Mencari Determinan dan Invers Matriks Namanya juga lawan, gaes. Pasti antara matriks yang satu dengan matriks yang lain akan saling bertentangan. Gampangnya sih, kalau yang satu nilainya positif, pasti yang satu lagi nilainya bakal negatif. Jadi, kalau ada matriks A, maka lawan matriks A adalah suatu matriks yang elemen-elemennya merupakan lawan dari elemen-elemen matriks A tersebut. A = [aij], lawan matriks A ditulis -A = [-aij] 2. Pengurangan Matriks Misalkan terdapat dua buah matriks, yaitu matriks A dan matriks B. Jika matriks C adalah matriks pengurangan dari A dengan B, maka matriks C dapat diperoleh dengan mengurangkan setiap elemen pada matriks A yang seletak dengan setiap elemen pada matriks B. Pada dasarnya, pengurangan sama halnya dengan penjumlahan terhadap lawan bilangan penambah, sehingga pengurangan matriks A dengan matriks B dapat diartikan sebagai penjumlahan matriks A dengan lawan matriks B. A – B = A + -B Sama halnya dengan syarat penjumlahan matriks, dua atau lebih matriks hanya dapat dikurangkan apabila memiliki ordo yang sama, teman-teman. Nah, supaya kamu nggak bingung, kita coba kerjakan contoh soal di bawah ini, yuk. Gaasss~ Contoh Hasil dari A – B dapat diperoleh dengan mengurangkan setiap elemen matriks A yang seposisi dengan setiap elemen matriks B. Gimana? Paham ya sampai di sini. Kalau gitu, kita lanjut ke operasi aljabar matriks berikutnya, yok! Perkalian Matriks Operasi perkalian matriks dibagi menjadi dua nih, yaitu perkalian matriks dengan bilangan real skalar dan perkalian antarmatriks. Kita simak pembahasan berikut untuk tahu bagaimana cara menyelesaikannya, ya. 1. Perkalian Matriks dengan Bilangan Real Skalar Misalkan terdapat matriks A berordo m × n dan suatu bilangan real skalar, yaitu k. Perkalian antara matriks A dengan skalar k dapat ditulis dengan kA yang diperoleh dengan mengalikan setiap elemen matriks A dengan skalar k. Perkalian suatu matriks dengan skalar dapat dilakukan tanpa syarat tertentu. Artinya, semua matriks dengan ordo sembarang dapat dikalikan dengan bilangan real skalar. 2. Perkalian Matriks dengan Matriks Misalkan terdapat dua buah matriks, yaitu matriks A dengan ordo m × p dan matriks B dengan ordo p × n. Perkalian matriks A dengan matriks B dapat ditulis dengan A × B yang diperoleh dari penjumlahan hasil kali elemen-elemen yang bersesuaian pada baris ke-i matriks A dengan kolom ke-j matriks B, dengan i = 1, 2, 3, …, m dan j = 1, 2, 3, …, n. Syarat agar dua buah matriks dapat dikalikan adalah matriks pertama harus memiliki jumlah kolom yang sama dengan jumlah baris pada matriks kedua. Ordo matriks hasil perkalian dua buah matriks adalah jumlah baris pertama dikali jumlah kolom ke dua. Hmm… Pasti kamu bingung ya maksudnya gimana. Oke, supaya kamu nggak bingung, kita coba kerjakan soal di bawah ini, yuks! Contoh Jumlah kolom matriks A adalah 2 dan jumlah baris matriks B adalah 2. Matriks A memiliki jumlah kolom yang sama dengan jumlah baris matriks B, sehingga syarat perkalian antarmatriks sudah terpenuhi. Selanjutnya, kita dapat mengalikan setiap elemen baris di matriks A dengan setiap elemen kolom di matriks B. Coba kamu perhatikan lingkaran berwarna pada tiap-tiap elemen matriks di bawah ini, ya. Lingkaran merah dipasangkan dengan lingkaran merah dan lingkaran biru dipasangankan dengan lingkaran biru. Baca juga Yuk, Pahami Konsep Turunan Fungsi Aljabar! Jadi, a11 akan dikalikan dengan b11, a12 dikalikan dengan b21, a21 dikalikan dengan b11, dan a22 dikalikan dengan b21. Lalu, jumlahkan hasil kali elemen-elemennya menjadi seperti ini Sehingga, hasil kali matriks A dengan matriks B adalah sebagai berikut Mudah ya, teman-teman. Meskipun begitu, kamu harus banyak berlatih soal, nih. Kenapa? Biasanya, kamu akan masih suka bingung dan kadang suka tertukar saat mengalikan elemen matriks yang satu dengan elemen matriks yang lainnya. Jadi, jangan malas untuk sekedar latihan soal, ya! Oke, selesai sudah materi kita kali ini, ya. Gimana? Seru kan belajar matriks! Nah, kalau kamu masih merasa latihan soal di atas tadi kurang untuk melatih kemampuan kamu, di bawah ini masih ada satu soal lagi yang bisa kamu kerjakan, nih. Coba kamu kerjakan dan tulis jawabanmu di kolom komentar, ya! Baca juga Apa Itu Notasi Sigma? Belajar Matematika memang nggak mudah, guys. Butuh ketekunan dan kesabaran. Kalau kamu ada materi yang masih sulit untuk dimengerti, yuk tanyakan langsung pertanyaanmu itu lewat Roboguru. Tutor akan membantu kamu dalam membahas soal dan mengerti pelajaran via live chat! Referensi Wirodikromo, S. dan Darmanto, M. 2019. Matematika untuk SMA/MA Kelas XI kelompok Wajib 2. Jakarta Erlangga. Artikel ini telah diperbarui pada 2 September 2022.

jika matriks a 2 3